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Intelligent tool wear identification based on optical
scattering image and hybrid artificial intelligence
techniques
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Abstract: Tool wear monitoring is crucial for an automated machining system to maintain consistent
quality of machined parts and prevent damage to the parts during the machining operation. A
vision-based approach is presented for tool wear identification in finish turning using an adaptive
resonance theory (ART2) neural network embedded with fuzzy classifiers. The proposed approach
is established upon the fact that the optical scattering image of a turned surface is related to the
wear of the cutting tool. By applying the technique of the ART2 neural network embedded with
fuzzy classifiers, the state of wear of the turning tool is determined from captured images obtained
by laser scattering from the machined surfaces of the workpiece. This approach is not unlike the
visual inspection of the surface of a machined workpiece to determine the state of wear of a cutting
tool by an expert machinist. However, experimental results indicate that the conventional technique
of measuring surface finish does not give values that correlate well with tool wear. On the other
hand, the laser scattering image provides a good indication of the tool wear as it is not readily
affected by buildup edge or cold-welded material, scratches and other disruptive defects on the
turned surface as the tool wears. In this paper, the theory on the laser scattering image and the
principle of tool wear identification are described. Based on the scattering images, the proposed
approach can correctly identify the condition of ‘significant wear’ prior to the rapid tool wear stage
for the cutting tool.
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1 INTRODUCTION

In finish machining, existing indirect measurement tech-
niques, such as those based on cutting force, vibration
or acoustic emission, are not sensitive enough to detect
tool wear [1]. The magnitude of the signal is relatively
not as significant against the background noise, due
primarily to the smaller depth of cut and lower feed
rate. Direct techniques, involving measurement of the
workpiece dimension or its surface roughness to sense
tool wear, are not suitable for on-line use. In finish
machining, the major cause of tool change is due to the
inability of worn tools to maintain good finish and
dimension control. The normal and severe wear stages
are typically not distinct. Nevertheless, a criterion for

the early recognition of tool wear is required, which is
usually different from that in rough machining. In
order to maintain machining quality and to prevent
damage to the part, the need for tool change should be
predicted or identified early enough to prevent the
cutting tool from approaching its rapid wear stage. In
addition, due to a great diversity of individual tool life,
a strategy for tool replacement based on some fixed
period, e.g. according to the Taylor equation, is insuffi-
cient for a reliable and cost efficient automated machin-
ing environment.

Optical methods (e.g. see references [2] to [7]) have
been shown to provide non-contact means for real-time
assessment of engineering surfaces, and are thereby
applicable to tool wear detection as the machined
surface can be considered to be a ‘fingerprint’ of the
machining condition [8, 9]. Of these, the optical scatter-
ing technique has been found to be useful for on-line
monitoring of conventional machined surfaces that are
not necessarily very smooth. However, in the presence
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of notable surface waviness or buildup edges, the ma-
chined surface roughness does not correlate well with
the intensity of its optical scattering pattern, rendering
it not so ready for use in tool wear detection [10, 11].

Thus far, the performance of an automatic tool wear
monitoring system is rarely better than a skilled opera-
tor who can make appropriate identification of tool
wear primarily based on visual inspection of the ma-
chined surface, such as its shine and texture, etc. A
more reliable and flexible approach for tool wear recog-
nition is yet to be available in practice for automated
machining systems, though intelligent tool condition
monitoring methods employing expert systems [12],
fuzzy classification [13–15] and neural networks [14–
19] appear to have great potential.

In this paper, the optical scattering technique with
laser illumination is used to characterize the topogra-
phy of turned surfaces. Based on captured images of
the optical scattering patterns from the turned surfaces,
an adaptive resonance theory (ART2) based neural
network embedded with fuzzy classifiers is employed
for tool wear identification in finish turning.

2 THEORY AND MEASUREMENT OF
OPTICAL SCATTERING IMAGE

When a rough surface (with irregularities not much
smaller than the wavelength of incident light) is illumi-
nated by a parallel light beam at a certain incident
angle, the reflected light is scattered into various direc-
tions to form an optical scattering pattern on a suitably
positioned observation screen. Consider a point on the
rough surface r=xx0+yy0+z(x, y)z0, where r is the
position vector of the point, x0, y0, z0 are unit vectors
and z(x, y) is a surface roughness function. The optical
scattering field is given by the Kirchhoff solution in
scalar form [20]:
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a= (1−R)sin u1+ (1+R)sin u2 cos u3 (3)

b= (1+R)cos u2− (1−R)cos u1 (4)

c= (1+R)sin u2 sin u3 (5)

where
l=wavelength of incident light
i= imaginary unit
u1= incident angle
u2=scattering angle
u3= inclination of the scattering plane
l=half of illumination length
w=half of illumination width

I0 and R are scalar values of the reflected field and the
reflection coefficient respectively of an ideal smooth
plane that will reflect the incident wave specularly in
the single direction (u2=u1, u3=0). The mean level of
the surface is the plane z=0. Equation (1) indicates
that the intensity of the scattered light in its field varies
with the topography of the measured surface and is
closely related to the condition of tool wear. Therefore
the corresponding optical image is formed on the obser-
vation plane.

Figure 1 illustrates the optical scattering image mea-
surement set-up. A parallel beam of monochromatic
light (0.63 mm wavelength) from a 5 mW He–Ne laser
is directed at the turned surface at an incident angle of
30. Its scattered light is projected on an appropriately
placed observation screen made of ground glass to form
a two-dimensional optical scattering image. The image
is captured and processed by a PC microcomputer with
a Matrox IP-8 frame grabber card connected to a
charge coupled device (CCD) camera mounted at a
distance 50 mm away. An optical reflector is also used
to serve as a reference smooth surface [to define I0 later
in equation (6)].

Fig. 1 Vision-based flank wear measurement system
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Fig. 2 Laser scattering images of turned surfaces

Fig. 3 Intensity of laser scattering images

Figures 2a to c show three captured scattering images
of a near-finish turned surface produced at three corre-
sponding stages of tool wear: fresh, some wear at
VB:0.10 mm and significant wear (i.e. severe enough
to affect finish condition and dimensional accuracy) at
VB:0.19 mm, as would be predicted by a skilled
operator. The respective intensity plots of the scattered
light field are shown in Figs 3a to c. It can be seen that
besides fluctuation in the intensity distribution, the
scattering image changes with the wear of the tool due
to the phenomenon that the intensity of the light scat-
tered from the turned surface varies according to the
surface topography. This has been observed for the
turned surfaces obtained in this study.

3 PRINCIPLE OF TOOL WEAR
IDENTIFICATION

3.1 Fuzzy clustering

Tool wear in finish machining generally progresses
gradually, with hardly distinct changes in the state of
the workpiece or machining condition. A suitable tech-
nique needs to be developed that can effectively identify
the progressive transition in the state of the tool from
normal wear to significant wear. Fuzzy set theory is
employed for this purpose as it has been known to be

an effective tool for solving highly non-linear, uncertain
or ill-defined complex problems that are not amenable
to precise mathematical expression or modelling.

Four fuzzy linguistic terms or fuzzy clusters are
defined to describe the tool wear (W) in finish turning:
‘negligible wear (w1) (starting from fresh state)’, ‘some
wear (w2)’, ‘more wear (w3)’ and ‘significant wear (w4)
(affecting finish and accuracy, and possibly close to the
rapid wear stage)’. The defined clusters are not unlike
the main types of tool conditions qualitatively evalu-
ated by an expert machinist on the tool conditions
according to visual inspection of the shine and texture
of the machined surface of the workpiece. A fuzzy
relation between the condition of the machined surface
and the state of tool wear is established through the
optical scattering images via a set of membership func-
tions. Figure 4 shows the membership functions used
in the study, which are measured between zero and
one for cases ‘completely not belonging to’ and those
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Fig. 4 Membership function for fuzzy classifiers

for that band is zero. The set of I( i
(r) is presented to an

ART2 neural network in the form of a feature vector S :

S= (I( 1
(r), I( 2

(r), ... , I( i
(r), ... , I( 10

(r)) (8)

As shown in Fig. 5, the adaptive resonance theory
(ART2) based neural network is made up of two suc-
cessive layers of cells: an input feature representation
layer F1 and an encoded category representation layer
F2, which are linked by feedforward and feedback
weighted connections. Each F1 cell consists of three
sublayers with six nodes and performs feature enhance-
ment in a synchronous manner on the input I( i

(r)

(i=1, 2, … , 10) and the feedback weight (Wji) (j=
1, 2, 3, 4) connections. Each F2 cell responds to a spe-
cified pattern while receiving signals through the
forward weight (Wij) connections. Once an input pat-
tern matches one of the stored exemplars, only the
corresponding F2 cell will resonate with the input; i.e. it
will output the maximum value close to 1, with the
others remaining at 0. The matching operation between
an input pattern and a sample pattern is adjusted
through a vigilance parameter (r). The detailed ART2
algorithm can be found in reference [21].

3.3 Learning and classification

The output of the ART2 neural network is character-
ized by a fuzzy feature vector W for the depiction of
tool wear, as shown in Fig. 5:

W= (w1, w2, w3, w4) (9)

For a given sample input S= (I( 1
(r), I( 2

(r), ... , I( i
(r), ... , I( 10

(r))
corresponding to a state of tool wear, the ART2 net-
work will be trained to obtain a designated output
vector W for the four F2 cells. In other words, each of
the four fuzzy stages of tool wear is represented by the
corresponding four values of its membership function,
among which an F2 cell with the maximum value of 1

‘completely belonging to’ a cluster. The criterion for
fuzzy clustering and judgement is based on the maxi-
mum value of the membership function.

3.2 Signal processing through the neural network

Average relative grey levels of the image pixels are used
to characterize the pattern features of the captured
optical scattering images. Each optical scattering image
consists of 49×98 pixels. Let the grey level of a pixel
be Ik and its relative value be

Ik
(r)=

Ik

I0

(6)

where I0 is the value with respect to a smooth plane as
described in equation (1) and serves as the reference
value which is obtained from the optical reflector (Fig.
1). Supposing that the range between 0 and 1 is divided
into ten bands Bi (i=1, 2, … , 10); i.e. 00B1B0.1,
0.10B2B0.2, 0.20B3B0.3, 0.30B4B0.4, 0.40
B5B0.5, 0.50B6B0.6, 0.60B7B0.7, 0.70B8B0.8,
0.80B9B0.9, 0.90B10B1.0. Then the average rela-
tive grey level for Ni pixels with Ik

(r) values that lie in
band Bi is

I( i
(r)=

1
Ni

� %
Ni

k=1

Ik
(r)� (i=1, 2, ... , 10) (7)

If no pixel has Ik
(r) value in a particular band, say Bj, I( j

(r)

Fig. 5 Fuzzy classifier-embedded ART2 neural network
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Table 1 Summarized results

ART2 network outputs
at ‘significant wear’

condition Metrology and microscopic observation

Workpiece texture

Depth of cut Imper-Tool wearCutting speedWorkpiece FeedrateCutting tool
(mm)(mm/rev) fectionsmaterials (mm)(m/min)(carbide) Wavinessw1 w2 w3 Roughness Raw4

0.16 Pressed0.24 LessNo changeTool A 0.72Steel AISI VB=0.150.94130 1.0 0.050
layersdiscernible1045

0.91 VB=0.13 Decrease (5 PressedLessTool B 254 1.0 0.050 0.19 0.36 0.58
layerstimes) discernible

0.63 0.96 VB=0.16 Increase (1.2 LessTool C Aluminium Tiny90 0.5 0.026 0.24 0.35
scratchesalloy times) discernible

0.28 0.42 0.77 0.95 VB=0.19 Decrease (0.8 TinyTool D Less110 0.5 0.026
scratchesdiscernibletimes)

indicates to which category it belongs. With reference
to Fig. 4, for example, the tool wear condition ‘signifi-
cant wear’ is expressed by W= (0.1, 0.34, 0.67, 1.0).
Through the adjustment of the vigilance parameter r,
the four patterns of tool wear can be established on the
ART2 network, i.e. four fuzzy classifiers are embedded
in the net connections.

When an input pattern for a cutting tool matches one
of the four exemplars of tool wear—‘negligible wear’,
‘some wear’, ‘more wear’ and ‘significant wear’—which
are stored in the trained ART2 network, the four F2
cells will resonate with it in a corresponding form of
membership function. The consistent record of each
group in their outputs can help to trace the progress in
the tool wear. Once an output pattern (w1, w2, w3, w4) of
the network is matchable to the designated set
(0.1, 0.34, 0.67, 1.0) such that w4 has the maximum
value close to 1, the tool is diagnosed to have reached
its condition of ‘significant wear’ and needs to be
replaced.

4 RESULTS

Turning experiments were conducted on steel and alu-
minium workpieces under different cutting conditions.
After each turning run, the degree of tool wear and the
condition of workpiece surface were determined and
checked with a microscope. The surface roughness Ra

of the workpiece was measured by the Talysurf stylus
contact method. The Ra of the workpiece obtained at
the ‘significant wear’ stage of the tool was compared
with that at the fresh or ‘negligible wear’ stage.

Table 1 lists a summary of the experimental condi-
tions and results. It also shows the successful identifica-
tion of the ‘significant wear’ by the outputs of the
ART2 neural network embedded with fuzzy classifiers.

The outputs (w1, w2, w3, w4) corresponding to tools A,
B, C and D at the ‘significant wear’ stage range between
0.9 and 1.0 respectively. The values of flank wear width
(VB) for these tools also indicate that the tool is at the
replacement stage. On the other hand, the ART2 out-
puts also show that there is no definite relationship
between tool wear and surface roughness of a work-
piece. An Ra:1–2 mm was obtained at the initial or
‘negligible wear’ stage. At the ‘significant wear’ stage,
the Ra of the turned surface could be 1.2 times higher
(for tool C), or up to 5 times lower (for tools B and D),
or even with hardly any change (for tool A). In addi-
tion, it was found from microscopic observation of the
workpiece surfaces that the feedmarks were less dis-
cernible at the ‘significant wear’ condition, due largely
to burnishing, rather than cutting, of the workpiece by
the worn tool tip and/or the rubbing of the worn tool
against the workpiece. Other imperfections, such as
intermittent cold-welded materials or buildup edges
(with tools A and B) and tiny scratches (with tools C
and D) were also observed on the turned surfaces.
These results suggest that features of the machined
surface topography can be affected by these imperfec-
tions, with corresponding effects on the measured sur-
face roughness [11], but, as the above results indicate,
not on the ART2 neural network with fuzzy classifier.

5 CONCLUSIONS

The approach adopted in this study is established upon
the fact that the optical scattering image is related to
the topography of the turned surface which, in turn,
changes with the progressive wear of the tool. The
laser-based optical scattering pattern recognition
method is not susceptible to the ambient light and
background noises. In spite of imperfections on the
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turned surfaces affecting the relation between the finish
condition and the state of wear of the tool, it is
sufficiently robust to successfully classify the ‘significant
wear’ stage using the ART2 neural network embedded
with fuzzy classifiers. Nevertheless, the influence of the
change in tool wear with the topographic features of
the turned surface and the corresponding effect on the
optical scattering pattern needs to be further investi-
gated and understood to ensure robust and efficient
tool wear identification over a broad range of turning
or machining conditions.
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